Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 146: 105358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35751181

RESUMO

In this study we have compared two modalities for flow quantification from measurement data; ultrasound (US) and shadow particle image velocimetry (PIV), and a flow simulation model using computational fluid dynamics (CFD). For the comparison we have used an idealized Quasi-2D phantom of the human left ventricular outflow tract (LVOT). The PIV data will serve as a reference for the true flow field in our setup. Furthermore, the US vector flow imaging (VFI) data has been post processed with model-based regularization developed to both smooth noise and sharpen physical flow features. The US VFI flow reconstruction results in an underestimation of the flow velocity magnitude compared to PIV and CFD. The CFD results coincide very well with the PIV flow field maximum velocities and curl intensity, as well as with the detailed vortex structure, however, this correspondence is subject to exact boundary conditions.


Assuntos
Hidrodinâmica , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Humanos , Reologia/métodos
2.
Comput Biol Med ; 109: 91-100, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31054389

RESUMO

When using Computational Fluid Dynamics to simulate ventricular blood flow in the heart, it has been common practice to neglect the effect of the sub-valvular apparatus and the trabeculae on the flow conditions. In this study, we analyze the effect of neglecting the chordae tendineae on the fluid flow and pressure drop. To test the assumption we use a previously developed dynamic 3D model of the left ventricle, aorta and valves that is based on 3D echocardiographic recordings. To this model we add the chordae tendineae as a sub-grid model. The previously developed 3D model for the left ventricle during systole is based on real-time three-dimensional echocardiography (RT3DE) recordings of a 30 years old female volunteer. The segmented ventricular wall does not include details of the aorta and the mitral valve, so these were reconstructed. The subgrid model for the flow across the chordae tendineae is based on the Actuator Line Method, which means that they are represented by drag coefficients. The analysis shows that the effect of the chordae tendineae on the pressure drop and work efficiency of the normal heart during systole is minor, and it seems that for simulating ventricular fluid flow and pressure drop during systole, one can follow the current practice and ignore the chordae. However, there can be local effects such as small vortices behind the chordae. Whether such effects are important for a particular application must be evaluated for the given case.


Assuntos
Cordas Tendinosas , Ecocardiografia Tridimensional , Imageamento Tridimensional , Modelos Cardiovasculares , Sístole , Adulto , Velocidade do Fluxo Sanguíneo , Cordas Tendinosas/diagnóstico por imagem , Cordas Tendinosas/fisiopatologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...